RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, MAY 2018 FIRST YEAR [BATCH 2017-20]

Date : 19/05/2018 Time : 11 am - 3 pm PHYSICS (Honours) Paper : ||

Full Marks : 100

[3]

[3]

[1]

[2]

[Use a separate Answer Book for each group]

<u>Group - A</u> (Answer <u>any three</u> questions) [3×10]

- 1. a) What do you mean by dimension of a vector space? Find out the dimension of the vector space spanned by the columns of
 - $\begin{pmatrix} 2 & 3 & -1 \\ -1 & 4 & -16 \\ 0 & -8 & 24 \end{pmatrix}.$ [1+2]
 - b) Given $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$ How the eigenvalues and eigenvectors of these two matrices are related?
 - c) A matrix A is given by $\begin{pmatrix} 2 & 4 \\ 5 & 6 \end{pmatrix}$ in the standard basis $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Find A with respect to the basis $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ -7 \end{pmatrix}$. [4]

2. a) Consider the coordinate system $OX_1 - X_2 - X_3$. In that particular basis; two vectors \vec{r} and \vec{R} are represented. Those two vectors are connected by a square matrix A; $\vec{R} = A\vec{r}$.

Transform it to a new system $OX_1' - X_2' - X_3'$ (a new basis) and the relation becomes $\vec{R}' = A'\vec{r}'$. Components of a vector in the prime and unprime basis are connected by equation $\vec{r} = S\vec{r}'$ and $\vec{R} = S\vec{R}'$ where S is a non-singular matrix.

- i) What is the relation between A and A'? Deduce it.
- ii) Show that the relation $\vec{AR} = \vec{Br}$ is invariant under a similarity transformation. [2]
- b) Find the eigenvalues and eigenvectors of a 6×6 identity matrix.
- c) Show that the transpose of the product matrix AB is $B^{T}A^{T}$.

d) Can you diagonalize the matrix
$$\begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$$
? Justify your answer. [2]

- 3. a) i) Show that the tensor $T_{jkmn} = \in_{ijk} \in_{imn}$ is antisymmetric with respect to the indices j and k and also with respect to m and n, where \in 's are Levi-civita. [2]
 - ii) If A_{ik} is an antisymmetric tensor, prove that $(\delta_{ij}\delta_{k\ell} + \delta_{i\ell}\delta_{kj})A_{ik} = 0.$ [1]
 - b) Establish the relationship between the Gamma function and Beta function i.e., $B(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$, where the symbols have their usual meanings. [3]

c) Show that :
$$\int_{-\infty}^{\infty} dx e^{-|x|} \delta(\sin x) = \cot h \frac{\pi}{2}$$

[Hint : use $\delta(g(x)) = \sum_{i} \frac{\delta(x - x_i)}{|g'(x_i)|}$ where the sum runs over all the real zeros of g(x)] [4]

- 4. a) Given a set of functions $\xi_n(x) = x^n$, $n = 0, 1, 2, ..., x \in (-\infty, +\infty)$.
 - i) Show that these functions are not square-integrable functions.
 - ii) Now an appropriate weight (damping factor) is introduced with each i.e $\psi_n(x) = \xi_n e^{-\frac{1}{2}x^2}$, n = 0, 1, 2 ... Now show that these set of functions are square-integrable. [3]
 - b) Show that $G(x,h) = \exp\left[\frac{x}{2}\left(h \frac{1}{h}\right)\right]$ is the generating function for the Bessel functions. Using

the generating function for integer n prove the recursion relation $J_{n-1}(x) + J_{n+1}(x) = \frac{2n}{x} J_n(x)$. [3+3]

- 5. a) Determine the critical points of the function $f(x, y) = x^3 + y^3 3xy$. Find whether the critical points are a relative maximum, relative minimum or a saddle point. [2]
 - b) A homogeneous rectangular membrane $(0 \le x \le a; 0 \le y \le b)$ fixed along the contour vibrates. Find the free vibration law of the membrane, if the initial conditions are

$$u(x, y, 0) = xy(a-x)(b-y) \text{ and } \left. \frac{\partial u}{\partial t} \right|_{t=0} = 0.$$
 [8]

Group - B (Answer <u>any two</u> questions) [2×10]

6. a) Write down the equations of motion of a system of N mass-points m_i (i = 1, 2, ..., N) moving under the action of applied forces \vec{F}_i and pair-wise internal forces \vec{f}_{ij} . If the internal forces are central forces obeying Newton's third law, prove the following :

i) For translational motion,
$$\frac{d}{dt}(M\vec{R}) = \sum \vec{F}_i$$
.
ii) For rotational motion, $\frac{d}{dt}\vec{L} = \sum \vec{r}_i \times \vec{F}_i$. [5]

where \vec{R} is the position vector of the centre of mass, \vec{L} is the angular momentum of the system, referred to an inertial frame of reference.

- b) i) State Newton's law of restitution for a two-body collision. Show that for an elastic collision, the coefficient of restitution, e = 1.
 - ii) Two particles of masses m_1 , m_2 and initial velocities \bar{u}_1 , \bar{u}_2 , respectively, collide head-on, if e is the coefficient of restitution. Show that the change in Kinetic energy after collision is

$$\Delta T = \frac{1}{2} \left(\frac{m_1 m_2}{m_1 + m_2} \right) (1 - e^2) (u_1 - u_2)^2 .$$
^[5]

- 7. a) A moving coordinate system Oxyz(R) has both a translational and rotational motion relative to an inertial coordinate system O₁XYZ(S). The position vectors of a moving particle P are \vec{q} in S, and \vec{r} in R at any instant t. If $\vec{\omega}$ is the uniform angular velocity of rotation of R, show that, $\frac{d\vec{q}}{dt} = \vec{V} + \vec{u} + \vec{\omega} \times \vec{r}$, where \vec{V} is the linear velocity of R w.r.t S, and \vec{u} is the linear velocity of P in R.
 - b) Hence show that the acceleration of the particle is S can be expressed as, $\frac{d^2\vec{q}}{dt^2} = \frac{d\vec{v}}{dt} + \ddot{\vec{r}} + 2\vec{\omega} \times \dot{\vec{r}} + \vec{\omega} \times (\vec{\omega} \times \vec{r}) \text{ where } \dot{\vec{r}} = \vec{u} \text{ and the } dot(\cdot) \text{ is the time-derivative in the moving frame R. Interpret the various terms on the RHS.}$
 - c) A bug crawls outward from the centre with a constant speed v along the spoke of a wheel that is rotating with constant angular speed ω about a vertical axis through the centre perpendicular to the plane of the wheel.

[2]

[4]

[1]

- i) Find all the forces acting on the bug.
- ii) If the coefficient of friction between the spoke and the bug be μ , show that the distance the

bug travels before slipping is,
$$d = \frac{(\mu^2 g^2 - 4\omega^2 v^2)^{\frac{1}{2}}}{\omega^2}$$
. [4]

- 8. a) Consider a rotating rigid body. Axis of rotation (\hat{n}) passes through the origin of the body reference frame OXYZ. Let \vec{r}_i be the position vector of i-th particle in the body.
 - i) Draw a figure showing OXYZ, \hat{n} , \vec{r} and write \vec{r} in \hat{i} , \hat{j} , \hat{k} basis. [2]
 - ii) Write \hat{n} in terms of direction cosines.
 - iii) Deduce the explicit expression for moment of inertia $I_{\hat{n}}$ about axis \hat{n} . [3]
 - b) Moment of inertia of a cube about an axis that passes through the center of mass and center of one face is I₀. Find the moment of inertia about an axis through the center of mass and one corner of the cube. (Use the explicit expression you derived in a(iii)) [4]
- 9. a) Consider a rigid body moves with one point stationary. Let \vec{r}_i, \vec{v}_i are the radius vector and velocity respectively of the i-th particle relative to the given stationary point.
 - i) write the total angular momentum about that point.
 - ii) Express \vec{v}_i in terms of $\vec{\omega}$ and \vec{r}_i .
 - iii) Using matrix notation find the relation between \vec{L} and $\vec{\omega}$.
 - b) Relative to certain rectangular coordinate system OX-Y-Z, the moments and products of inertia of a rigid body are given by $I_{xx} = 3B$, $I_{yy} = 2B$, $I_{zz} = B$, $I_{yz} = -B = I_{zy}$ and the other components are zero.

What is the kinetic energy of rotation if the body rotates about y-axis with angular velocity $\vec{\omega}$? Find also the magnitude and direction of the angular momentum. [4]

Group - C

10. a) Prove that $\left(p^2 - \frac{E^2}{c^2}\right)$ is an invariant under Lorentz transformation. [5]

- b) A particle moves in XY-plane with a velocity 6×10^9 cm/s at an angle 60° with X-axis in a system A. Find the magnitude and direction of its velocity as observed by an observer in system B, when B has a velocity 3×10^9 cm/s along the positive X-axis.
- c) Does the space-time diagram follow Euclidean geometry? What kind of geometry it actually follows? Explain.
- 11. a) A spaceship is moving away from the earth at a speed v = 0.8c. When the ship is at a distance of 6.66×10^8 km from the earth as measured in the earth's reference frame, a radio signal is sent out to the spaceship by an observer on earth. How long will it take for the signal to reach the ship.
 - i) as measured in the earth's reference frame?
 - ii) as measured in the ship's reference frame? Find out the location of the spaceship when the signal is received, in both frames.
 - b) Calculate the velocity of a 1MeV electron.
- 12. a) What is the significance of different invariant hyperbola inside the light cone in space-time diagram? [2]
 - b) If two events are separated by a light like intervals, is there any inertial frame in which they can be simultaneous?
 [2]
 - c) Consider two time-like (TL) four vectors \hat{A} and \hat{B} in space-time. Is there any reference frame in which $\hat{A} \cdot \hat{B} = 0$? Explain. [2]

[7]

[3]

[3]

[2]

[1]

[1]

[1]

[4]

- d) Explain 'length contraction' and 'time dilation' in Minkowski's geometrical representation.
- 13. a) Write down the Lorentz transformation equations and hence derive the equations of relativistic addition of velocities. [1+5]
 - b) Show that two successive Lorentz transformations with velocity parameters β_1 and β_2 in the same direction are equivalent to a single Lorentz transformation of velocity parameter $\beta = \frac{\beta_1 + \beta_2}{1 + \beta_1 \beta_2}$.

<u>Group - D</u>

(Answer <u>any three</u> questions)

14. a) Establish the following relation using Fermat's principle : $\frac{\mu_2}{v} - \frac{\mu_1}{u} = \frac{\mu_2 - \mu_1}{r}$ (the symbols have their usual meanings).

- b) An achromatic converging doublet of focal length 60cm is formed with a convex lens of crown glass and a concave lens of flint glass placed in contact with each other. Calculate their focal lengths. Dispersive power of crown glass is 0.03 and that of flint glass is 0.05.
- 15. a) Find the cardinal points of Huygens eyepiece. What are its advantages and disadvantages with Ramsden's eye piece. [3+2]
 - b) The waves : $\vec{E}(z,t) = (\hat{i}E_{ox} + \hat{j}E_{oy})\cos(kz \omega t), \ \vec{E}'(z,t) = (\hat{i}E'_{ox} \hat{j}E'_{oy})\cos(kz \omega t)$

both represent a certain state of light. Show that in general such waves are not orthogonal. Under what circumstances will their planes of vibration be normal to each other. [3]

c) Describe completely the state of polorization of each of the following waves :

i)
$$\vec{E} = \hat{i}E_0 \sin(\omega t - kz) + \hat{j}E_0 \sin\left(\omega t - kz - \frac{\pi}{4}\right)$$

ii) $\vec{E} = \hat{i}E_0 \cos(\omega t - kz) + \hat{j}E_0 \cos\left(\omega t - kz + \frac{\pi}{2}\right)$
[2]

- 16. a) Distinguish between Fresnel and Fraunhofer type of diffraction.
 - b) A parallel beam of monochromatic light is incident normally on a plane transmission grating.
 Find an expression for the intensity distribution of the diffracted rays due to diffraction by the grating.
 - c) What are missing spectra in the diffraction pattern of a plane diffraction grating.
- 17. a) Explain the terms "Spatial Coherence" and "Temporal Coherence" with reference to Young's double slit experiment for interference pattern. [2]
 - b) Determine the frequency bandwidth of white light. Compute the associated coherence length and coherence time. (White light ranges from 384 THz to 769 THz) [4]
 - c) Derive an expression for the coherence length of a wave in terms of the linewidth $\Delta\lambda_0$ corresponding to a frequency bandwidth of $\Delta\gamma$. [4]
- 18. a) Outline the theory of a zone plate and compare it with a converging lens.
 - b) We know that principal maxima occur when $a \sin \theta_m = m\lambda$ $m = 0, \pm 1, \pm 2, ...$ and this has come to known as the grating equation for normal incidence.
 - i) Differentiate the grating equation (necessary for broad band of colors)

ii) What is the angular separation between the sodium D lines (589.592 nm and 588.995 nm) in the first order spectrum generated by a plane transmission grating having 10,000 lines per inch at normal incidence?

[3]

[1]

[6]

[5]

[5]

[2]

[2]

[3×10]

[4]

[4]